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For the one-electron Schr6dinger equation among the solutions of which the Slater-Zener-type 
functions can be found, it is shown, that it can be generalized to the two-centre case only in one way, 
if one demands separability in prolate spheroidal coordinates, and if in addition to the Coulomb term 
of the potential energy there shall be an additional function of the product r~ �9 r 2 only. The generalized 
problem with a potential energy of the form V(r)=-Z~/r  t -Z2 / r  2 -Q(R)/r 1 r2 is studied for the 
case of two equal centres Z~ = Z2 = Z > 0 with regard to the existence and number of bound states. 
The results are extended as far as possible also to the case with unequal centres. For some examples 
with equal centres wave functions and correlation diagrams have been computed exactly for the 
lowest electronic states. 

Es wird gezeigt, dab sich die Ein-Elektron-Schr6dingergleichung, unter deren L6sungen die Slater- 
Zener-Funktionen sind, nur auf eine Art auf den Zwei-Zentren-Fall verallgemeinern l~iBt, wenn 
Separierbarkeit in elliptischen Koordinaten verlangt wird, und wenn zus~itzlich zum Coulomb- 
Anteil tier potentiellen Energie ein Zusatzglied, das nut  eine Funktion des Produkts r~ �9 r 2 ist, vor- 
handen sein soll. Das verallgemeinerte Problem mit der potentiellen Energie der Form V(r)= -Z~/r  I 
--Zz/r 2 -Q(R)/r  1 r 2 wird im Hinblick auf die Existenz und Anzahl gebundener Zust~inde ffir den Fall 
gleicher Zentren Z1 = Z 2 = Z > 0 untersucht. Die Ergebnisse werden soweit m6glich auf den Fall 
ungleicher Zentren erweitert. Ffir einige Beispiele mit gleichen Zentren wurden Wellenfunktionen und 
Korrelationsdiagramme fiir die tiefsten elektronischen Zust~inde exakt berechnet. 

L'6quation de Schr6dinger mono-61ectronique qui comporte parmi ses solutions des fonctions 
du type Slater-Zener, ne peut ~tre g6n6ralis~e au cas ~ deux centres que d'une seule mani6re en exigeant 
la s6parabilit6 en coordonn6es sph6roidales allong6es et en ajoutant au terme coulombien d'6nergie 
potentielle une fonction du produit  r 1 r 2 seulement. Le probl+me g6n6ralis6 avec une 6nergie potentielle 
de la forme 

Z1 Zz Q(R) 
v ( r )  - 

YI r2 rl F2 

est 6tudi6 pour le cas de deux centres identiques Z 1 = Z z = Z > O, en ce qui concerne l'existence et le 
nombre d'6tats li6s. Les r6sultats sont 6tendus autant que possible au cas avec centres diff6rents. 
Pour certains exemples /t centres identiques on a calcul6 exactement les fonctions d'ondes et les 
diagrammes de corr61ation pour les 6tats 61ectroniques les plus bas. 

1. Introduction 

I n  P a r t  I [ 1 ]  i t  h a s  b e e n  p r o p o s e d  to  s t u d y  t h e  s e p a r a b l e  o n e - e l e c t r o n  S c h r 6 -  

d i n g e r  e q u a t i o n :  

( A 2 1 Z 2 Q ( R ) _ ] z = E z "  (1) 

2 r 1 r 2 r 1 r 2 / 
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The bound state solutions of this equation, the generalized diatomic orbitals, 
are to serve as a one-electron basis in applications to diatomic molecules 1. 
Functions of this kind represent a generalization of the Slater-Zener-type atomic 
functions, since the eigenvalue equation for the "united centre" case R--+0: 

( A Za + Z2 Qo ) 
2 r r 2 X = EZ (2) 

(with the limiting value Qo r of Q(R) for R--+ 0) can be specialized to become an 
equation, among the solutions of which the Slater-Zener-type atomic functions 
can be found. 

From the literature it is well known that, for certain parameter values Z1, Z2 
or Q in Eq. (1) and (2), the spectrum and the eigenfunctions behave rather extra- 
ordinary in comparison with some standard problems in quantum mechanics e.g. 
the H atom or the H~- molecule ion. For example no bound states exist in the 
case of Z ,  = - Z 2 ,  Q = 0  (finite dipole) in Eq. (1) if the dipole moment is below 
a certain limit (cf. e.g. [2]). For  the one-centre problem (2) with (Z1 + Z 2 ) = 0  
it is known, that for certain values ofQo > 0 the spectrum is not bounded from below 
while for other values of Qo > 0 no discrete eigenvalues exist (ef. e.g. I-3, 4]). These 
special cases demand a careful examination of the differential Eqs. (1) and (2) 
before a calculation of the eigenvalues and eigenfunctions and before an application 
to molecular problems. In this paper the two-centre cases with equal centres 
Z1 = Z2 = Z > 0 will be studied. The results however will be extended as far as 
possible also to cases with different centres. In all cases Q does not depend on 
the electronic coordinates, however it can be a function of the distance R of the 
two centres. The results for the united-centre case (2) can be found in the literature 
or may be derived easily for some special cases [5, 1], and will be only reported 
here together with the results for the two-centre case and the case R ~ o o  [1] 
in Table 1 below. 

2. Extension of Slater-Zener-Type Functions to the Two-Centre Case 

The potentials of the class of separable problems with cylinder symmetry 
are of the general form: 

X(l~) + Y(v) (X and Y arbitrary functions) 
V(r)  = /2 2 --  v 2 ~ ---~ (r 1 -~ r 2 ) / e  , v = (r 1 - r 2 ) / g  (3) 

For gaining a set of two-centre functions which represent a generalization of 
Slater-Zener-type functions it is not possible, as it might seem for a moment, 
to start from a one-electron Schr6dinger equation: 

( A Z 1 Z z  Qa Qg)2=E2 (4) 
2 rl r2 r~ r~ " 

1 Potentials of this kind with an additional term Vr(r)=(al~2+ bv2)/rl r 2 have been proposed 
as model potentials in one-electron theories for many-electron molecules [18, 19]. These potentials 
will not been treated here, since there are enough non-linear variational parameters contained in the 
present basis which shall be used e.g. in CI calculations. However one may show easily that the results 
about the discrete spectrum in Chapter c) below are not affected at all by an additional 
term [a(# 2 - 1)+ a]/r, r 2. V r may be reduced to this form without loss of generality [19]. 
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This problem has no potential of the separable form (3). The whole class of separable 
problems with potentials which can be written as a sum of two terms which are 
functions of r 1 and r 2 respectively: 

Vs(r) = gl (rl) + g2 (r2) (gl and g2 arbitrary functions) (5) 

has been given by Coulson and Joseph [6], and consists essentially of such 
potentials which are a sum of Coulomb terms. 

If one goes over to the limit R ~ 0  in the way described in [1], the potential 
energy of Eq. (3) tends to: 

V ( R  = 0) = lim R 2 X ( 2 r / R )  
R-.o 4r 2 

under the assumption that Y(v) depends on the parameter  R in such a way that 
it will vanish in the limit case so that V ( R  = 0) will be a pure radial potential. If  
one demands that V ( R  = 0) should be of the form: 

Z 1  -[- Z 2  Qo 
V ( R  = O) - 

r F 2 

the form of X(p) is no longer arbitrary, while Y(v) can still be chosen in an arbitrary 
way in the corresponding two-centre case. An especially simple form of V(r) 

is then 
Z 1 Z 2 Q 

v ( r )  = 
r I F 2 r 1 F 2 

apart  from the arbitrary Y(v)-part. However  this potential is the only case of a 
potential with cylinder symmetry of the general form: 

Ve(r) Zx Z2  + g(r I �9 r2) (6) 
t" 1 r 2 

for which the one-electron Schr6dinger equation is separable in prolate spheroidal 
coordinates. This can be proved in the following way: separability is given if and 
only if for all values of r 1 and r 2 Eq. (3) holds for the potential V(v). Using Eq. (6), 
Eq. (3) can be written as: 

- - Z l r  2 - Z 2 r  1 + r  I �9 r 2 .g(r  1 �9 ra) X ( # ) +  Y(v) 

r I �9 r 2 r 1 �9 r 2 

Since the terms with Z1 and Z 2 can be written as a sum of a function of # and a 
function of v respectively one has: 

P" g(P) = )~(#) + Y(v) (7) 
with 

p = r 1 �9 r 2 ; (p = r I + r z ; v = r 1 - r 2; R = 1). 

By differentiation of Eq. (7) after r 1 one gets: 

d?(v) dg(p) dr ( (#)  + _  (8a) 
rzg('P) + P d-pp r2 - d ~  dv 
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and by differentiation of Eq. (7) after rz: 

, dg(p) d2(#)  dY(v) (8b) 
ra g(P) -t- p ~ r 1 - dl~ dv 

Addition of (8 a) and (8 b) and subtraction of (8 a) and (8 b) respectively yields: 

dg(p) 2 d2(l~) 
g(P) + P dp # d# (9a) 

dg(p) 2 d~(v) 
g(/9) + p - (9 b) 

dp v dv 

From these equations it follows: 

2 dX(#) 2 dY(v) 
= - -  0 o )  

I~ d# v dv 

Eq. (10) is true for all values of # and v only if both sides of it are constants C': 

2 d X ( # ) = C ' ,  ( l la )  
# d# 

2 dY(v) = C ' .  ( l lb)  
v dv 

Integration leads to: 

2 ( # ) =  C#2+D1,  (12a) 

f~(v) = - Cv 2 + D 2 . (12b) 

If these functions are introduced into Eq. (7) one obtains the function g: 

g(p)= DI + D2 
/~2 _ v ~ + C, (13) 

D 
g(r 1 �9 r2)= - -  + C.  (14) 

r i r 2 

Therefore the function: 

Q(R) 
g(h"  r2) = - -  (15) 

r I r 2 

Wads, up to an additive constant, to the only potential of the general form (6) 
for which the SchrOdinger equation is separable in prolate spheroidal coordinates. 
(The occurring functions arc supposed to be differentiable.) The lines of constant 
potential of the additional potential (15) alone are given by lemniscates. 

3. The Discrete Spectrum of the Two-Centre Problem 

The following theorem about the existence and number of bound state solutions 
of the Schr6dinger Eq. (1) shall be proved: 

Theorem. a) I f  R(Za + Z2)> 0, Eq. (1) has (independent of the value of Q) 
infinitely many discrete eigenvalues bounded from below. 
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b) I f  Z 1 -~- Z 2 = 0 and 2Q - I(1 + 1) ~ 1/4 then there are no discrete eigenvalues. 
For Z 1 = Z 2  = 0  and 2 Q -  l(l+ 1)> 1/4 there are infinitely many eigenvalues 

of Eq. (1) bounded from below. 
c) I f  R(Zx + Z2) < 0 (and Q > O) and if 

R(Z  1 + Z2) + 2Q + A'vo < 1/4 

there are no eigenvalues of Eq. (1). 
I f  R(Z  1 + Z2) < 0 (and Q > O) and if 

R(Z  1 + Z2) + 2Q + A'vo > 1/4 

there are at most a finite number of eigenvalues of Eq. (1). 
A'~o is the gratest value on one A'~(p2)-curve in the range p2 >0 (see below). 

Those values of the separation constants, for which there are eigenvalues of Eq. (1), 
may be determined numerically (see Section c) below). 

d) I f  Z 1 < O, Z 2 < 0 and simultanously Q < O, no bound states exist since there 
are no attractin 9 centres (trivial case). 

Proof. The first results about  the discrete spectrum of the partial differential 
operator of Eq. (1) can be obtained at once with the general theorems of Kato [-7, 8]. 
The formal differential operator of Eq. (1) determines uniquely a self-adjoint 
operator with a certain domain in the Hilbert space of square integrable functions 
over the three-dimensional Euclidian space. This follows from the fact that the 
potential energy is locally square integrable and that it remains bounded for 
[rl-~ oo for it has no stronger singularity in any space point than the potential 1/r. 

From the same reasons it follows that the spectrum of the operator of Eq. (1) 
is bounded from below. The continuous spectrum covers the nonnegative real axis, 
since V(r)-~O for ]r]--, oo. The spectrum on the negative real axis contains (if any) 
only isolated eigenvalues of finite multiplicity�9 It is clear that the Schr6dinger 
Eq. (1) has no negative energy eigenvalues, if there are no attractive centres, that 
means if Z 1 __< 0, Z 2 _< 0 and simultanously Q < 0 (case d)). So furtheron only those 
cases have to be examined with regard to bound states for which there is at least 
one attractive centre. 

Further results about  the spectrum may be obtained from the separable partial 
differential equation in prolate Spheroidal coordinates which is derived from (1). 
With the product function: 

eim4~ 
z - -P0 t ,  v) ~ (m integer) (16) 

one obtains: 

1 [ ~ 2 0 0 (1 - v 2) ~ 
//2__1,,2 --  ~ - - ( #  - - 1 )  (~]./ (~y (~W 

t o2 )} + # 2 ~  R(Z1 + Z 2 ) l t + R ( Z I - Z 2 ) v - 2 Q ( R ) +  

�9 POt, v)= _p2p(# ,  v) 

(17) 

wi th  p2 _ _ 1/2 E R  2 (p > 0) .  
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It is now possible to apply the separation theory of Cordes [9] to the selfadjoint 
operator of Eq. (17) [5]. According to the theory of Cordes the eigenvalues of 
Eq. (17) are those values -p2 and only those for which there exists at least one value 
of A', so that the equations: 

{ d 2 d m 2 } 
- f~(#  - 1 ) - - ~ - p 2 ~ 2 - 1 ) + R ( Z I  +Z2)I t+2Q+A ' ~2_1- U ~ ) = O ,  (18) 

{ d ( l _ v 2 ) ~ d  mZ } 
~ - v  d v  - p2(1  - v2) - R ( Z 1  - z 2 )  v - A t ~-- 1 ~ , 2  V(v) 0 (19) 

simultaneously have solutions which have to fulfil certain requirements of 
square integrability and of eventual additional boundary conditions [5 I. 

Those parameter pairs (p2, A'~) of the v-Eq. (19) for which there are solutions 
which satisfy the boundary conditions are represented by a set of curves in the 
real (p2,A')-plane. For the derivative dA'Jd(p 2) of all the functions A'~(p 2) it 
can be shown [9] that: 

dA'~ 
- 1 <  d - - ~  <0  (0<p2<+cx3). (20) 

A survey over the solutions of the #-Eq. (18) and the corresponding parameter 
pairs (p2 A~) can be obtained with the following eigenvalue problem ([9], II, p. 383): 

1 
(#2 _ 1) cos0 + sin0 

m 2 

7Z 
�9 f = s f ,  0 < 0 <  - - .  

2 

R(ZI + Z 2 ) p - 2 "  + 2" Pot" (21) 

If the problem has eigenvalues s and eigenfunctions f then the #-Eq. (18) posesses 
the required solutions U~) belonging to the parameter pairs (p~-~cos0, 
A~ + s sin0). For a further simplification one can choose 0 = n/4 and therefore 
cos 0 = sin 0. According to Friedrichs [10] one obtains the deepest point So of the 
non-discrete part of the spectrum of the operator of Eq. (21): 

po 
a~  cos0" (22) 

The existence and the number of discrete eigenvalues of Eq. (21) may be recognized 
from the number of zeros of the solutions of the corresponding differential equation 
for the deepest point s o of the non-discrete spectrum: 

d ~ 2 _ 1  ) + +R(ZI+Z2)p+(2Q+A'o+p~) f = 0  (23) #2_ 1 

The proof can be completed in the following way now: the position of the parameter 
pairs (p2, A~) relative to the straight line A '=  ( 1 / 4 - 2 Q ) -  p2 in the (i0 2, A')-plane 
is decisive for the existence of acceptable solutions of the #-Eq. (18), as will be shown 
below. On the other hand the position of the curves A'~(p 2) (for which there are 
4 Theoret. chirn. Acta (Berl.) VoL 21 
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solutions of the v-Eq. (19)) relative to this line can be recognized from the value 
A'~ (p2= 0) and the range of possible values of the gradient (20) of A'~(p2). Those 
regions of parameter values (pz, A') for which both Eqs. (18) and (19) have solu- 
tions, can then be determined from the relative position of the regions of acceptable 
parameter values A~(p 2) and A'~(pZ). 

a) Case with R(Z1 + Z2) > 0 

If R(Z~ + Z2)> 0 the solutions of the differential Eq. (23) always have (in- 
dependent of the values of Q, A;  and p~) infinitely many zeros (according to a 
theorem of Kneser [11]). Therefore there is an infinite number of discrete eigen- 
values e below 0% [12]. It follows that there is an infinite number of parameter 
pairs (p2, A,u) on curves Au(pZ). Those pairs (20 2, A') for which the Eqs. (18) and (19) 
have simultaneous solutions can then be determined in the same way as for the 
similar equations in the case of the H~ molecule ion (cf. e.g. [1]). 

b) Case with Z 1 = Z 2 = 0 

In the case that there are no Coulomb centres (or in the case of equal opposite 
charges R(Z 1 + Z2)--0) Eq. (23) goes over into the differential equation of the 
associated L6gendre functions. Its solutions P."(/t) and Q~(p) have 

for 2Q+A'o+p~<I/4 no zeros in (1, oe), 
for 2Q+A'o+p~ > 1/4 infinitely many zeros in (1, oo) 

(cf. e.g. [13]). From the number of zeros now again follows the number of eigen- 
values ~ below the limit ~o of the non-discrete part of the spectrum [12]: 

2Q + A~ +po z < 1/4: no eigenvalues below ~o, (24) 

2Q + A~ + po z > 1/4: infinitely many eigenvalues below ~0. (25) 

Corresponding to the number of eigenvalues below e0 there are parameter pairs 
(po 2 - c~ cos0, A; + e sin0, with c~ < p~/cosO) for which there are solutions of the 
#-Eq. (18). If the greatest value of A; and the lowest value of po 2 on one A'~(p2)- 
curve in the range p2 __ 0 are inserted into the inequalities (24) and (25), one can 
decide if, on the special A'~(p2)-curve (m given, for a certain l = m, m + 1, ...) under 
consideration there are any possible parameter pairs (p2, A') for both differential 
Eqs. (18) and (19). Accordingly there will be eigenvalues _p2 of the partial dif- 
ferential Eq. (17) (cf. Fig. 1 for the following discussion). 

In the case Z1 = Z2 = 0 the above mentioned extremal pair on one A'~(p2) - 
curve is (0, - l ( l +  1)) [14]. It follows then: if one has 

- l ( l  + 1) _ 1 / 4  - 2 ( 2  (26 )  

there are no parameter pairs (pZ, A') corresponding to these values of Q and l, 
and thus there are no energy eigenvalues E, which are determined by p2. 

If one has 
- l ( I+  1) > 1/4 - 2Q (27) 



Two-Centre Problems 51 

(1/4-2Q) 

A' t 1 P~ 
0 T- 

-2 

- ~  

1 = 2 A ~  

Fig. 1, The qualitative behaviour of the functions A'vz 1 (p2) 

there are infinitely many parameter pairs (t3 2, A t) for these values of Q and l, which 
lie below the straight line A'(p 2) = - l ( l  + 1). The whole curve A'~(p 2) belonging 
to m and I lies above the straight line A'(p 2) --- (1/4 - 2Q) - p2 with the gradient - 1, 
since A'v(p 2) has a gradient with values between - 1 and 0 (see Eq. (20)). Therefore 
one always has A'v + p2 > 1/4 - 2Q. The parameter pairs (/)2, A') above that straight 
line for which the g- and v-Eqs. (18) and (19) have simultaneous solutions can be 
determined in a similar way as in the case of the H~ molecule ion (cf. e.g. [1]). 

c) Case with R(Za q-Z2) ~_~0 and Q >0 

For the remaining cases with R(Z1 +Z2)<O and Q > 0  one recognizes 
from the special case with R(Z~ + Z2)--0 of Eq. (23), that the solutions of the 
corresponding equation with 

R(Z 1 + Z2) + 2Q + A'o + p~ <= 1/4 (28) 

also have no zeros in (1, o0), since this equation is a Sturm minorant to Eq. (23) 
for this case [15]. If 

R(ZI + Z2) + 2Q + A; + po z > 1/4 (29) 

the solutions of (23) have at most a finite number of zeros since this behaviour 
can be shown for the ends of the interval (1, oo). At # = oo this follows from a 
4* 
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Fig. 2. The potential energy for the case V R = -  R / r l  r 2 in comparison with the potential energy 
Vn~ = - 1/r~ - 1 /r  z and the corresponding electron densities along the z-axis for the two lowest states 

a o ls  and a .  is (R = 2[a0] ) 

F o o t n o t e s  t o  T a b l e  1 

a In the trivial case Q =< O, no discrete eigenvalues exist. 
b This condition has been introduced only for R-~ oo: if (Z1 + Q)=< O, then there are no eigen- 

values for Q = R C in the limit case R = oo. 
c If (Z 1 + Za + Q) < O, no discrete eigenvalues exist. 
d Cf. [5]. 
e E.~ is given e.g. in Eq. (10) of [1]. 
f Cf, I l l ,  
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theorem of Kneser [11]; at/~ = 1 this is true since this point is a regular singular 
point of the differential equation [16]. Thus it follows in the same way as above 
that there are at most a finite number of energy eigenvalues below E = 0 for a 
certain value of R(ZI  + Z2) and Q. In order to determine these values one has 
(as above) to insert into Eq. (28) and (29) the highest value of A'~ and the lowest 
value of p2 on one A'v(p2)-curve in the region p2 ~ 0. A simple quantitative result 
as in the case of equal centres Z1 = Z2 > 0 cannot be presented here, since A'~(p:) 
of the v-Eq. (19) does not  accept integral values in the limit p 2  = 0. However the 
region consisting of pairs (R(Z1 + Z2), Q) with R(Zx + Z2) < 0, and Q > 0 for which 
bound states still exist can be determined numerically within the scope of the 
methods described in Part I [-1] in the following way. Starting with the initial 
approximation, that the negative centre has been brought to infinity, the eigenvalues 
are calculated stepwise for all distances until the limiting value p2 = 0  has been 
reached. 

The results for the two-centre cases and for the limit cases R = 0 and R = oo 
are summarized in Table 1 for Q ( R ) = R C  and Q(R)= C, where C is a constant. 

4. Results for Special Cases of the Generalized Two-Centre Problem 

a) Results for the Potential Energy V R = - R/r I r 2 

The potential energy 

R 

r I r2 
(30) 

has the same value as the potential energy of the H~ molecule ion: 

1 1 r 1 + r 2 
Vu~ . . . . . . .  (31) 

r 1 r2 r l  r 2 

for all those points on the line through the two centres, for which one has r 1 + r 2 = R 
(see Fig. 2). In all other points of space where r 1 + r2 > R the potential energy 
VRis greater than VH~. For  the ground state ag ls Fig. 2 shows that the electron density 
Z~ of the problem with Vg is greater than the electron density Z~; of the problem 
with Vnl in the region [z[ __< 1. The opposite is true for [z[ > 1. For  the first excited 
states a, ls Z 2 is smaller than Z~ in roughly the region [z[ _< 3. Since the increase 
of the electron density between the centres is decisive for a chemical bond (see 
e.g. [17]) one may conclude here that the potential energy VR leads to a strengthen- 
ing of the bond in comparison to the H~- potential if it is applied in a molecule 
model. 

According to the results of Chapter 3 no bound states exist if in the case of 
1 = 0 the distance R is not greater than the critical value R k r i t  = 0.125, while in the 
case l = 1 the critical value is R k r i t  = 1.125. Assuming a value of R (=  1.5) near the 
critical one for l = 1 Fig. 3 shows that the electron density is more distributed 
over the whole space in comparison to H +. For  l = 0 where this value of R is far 
from the critical value 0.125 no such behaviour occurs. 
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Fig. 3 a and b. Contour diagram of the wavefunction for the lowest excited state a. ls for a) the problem 
with the potential energy VR = - R/r1 r2; b) the hydrogen molecular ion H~ (R = 1.5 [ao]) 

Fo r  this potent ia l  the electronic energy E = E(R) for the g round  state agls 
and  the first excited state a .  l s  has been computed  (Fig. 4). The calculat ions show 
that  for R ~ Rkrit the energy E(R) tends to zero. For  compar i son  the corresponding 
energy curves of H + have been inserted into Fig. 4 too. 
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b) Resu l t s  f o r  the Po ten t ia l  Energy  V 1 = - 1/r 1 r 2 

The va lue  of  Q(R)  -- cons t  -- 1 in the  po ten t i a l  energy:  
1 

Vl = - - -  (32) 
r 1 r 2 

is be low the cr i t ical  value  Qkri t  = 1.125 for l - -  1. However ,  for l = 0 the  value o f p  
which does  no t  d e p e n d  on  R here  can  be ca lcu la ted  by  the me thods  of  Pa r t  I [1]. 
E ( R )  becomes  then the very s imple  func t ion :  

2p z const  
E ( R )  = R2 - R2 (33) 



Two-Cen t r e  P r o b l e m s  57 

which indeed shows the predicted behaviour for the limiting cases: for R--,0 
the energy spectrum is not bounded from below ([5]; see Table 1) while for R --* ao V~ 
disappears and with it the discrete energy spectrum. 

c) Results for the Potentials of a) and b) with Additional Coulomb Centres 

For the potential energy from a) with additional Coulomb centres: 

1 1 1 
1,'1,1 - (34) 

r l  r 2 r l  r 2  

the first excited state o-. is (l = 1) has a finite energy eigenvalue even for R =0,  
while for 1 = 0 it can be seen that the energy spectrum is not bounded from below 

~5 1 1,125 2 E ~= /0, ~ Rlaol 
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. i ,  Z 

VH_:~ - 1  1 
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Fig. 5. The  energy E = E ( R )  for the s ta tes  % l s  and  or, l s  for the p rob l em wi th  the po ten t i a l  energy 
Vl , t  = - l/r1 - 1/r 2 - 1/r 1 r a (For  compar i son  E ( R )  of H~- for these states  is given too) 



at R = 0. Fig. 5 shows this behaviour with the help of the calculated energy func- 
tion E = E(R). 

In the case of the potential energy operator:  

1 1 R 
gl ,  R - -  (35) 

r l  r2 /'1 r2 

there are discrete energy eigenvalues for all values of I and R as indicated in Table 1. 
In the limit R = 0 the united a tom is the same as in H~, since the linear term in 
R disappears. On the other hand the limit cases for both problems for R ~  c~ 
are quite different. Especially remarkable  is the deep minimum in the energy 
curve E = E(R) as shown in Fig. 6 for the ground state of the problem with VI,R. 
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E= E(R) 
1 1 R for v~,R :-g-7~- ~ 
1 1 

VH ~ = r~ r 2 

-2 .0  

Fig. 6. The energy E = E ( R )  for the states crgls and a, ls for the problem with the potential energy 
V1.R  = - 1 / r l  - 1 / r 2  - R / r l  r2 (For comparison the energy for these states of H~- is given too) 
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In the region near R = 1 the curve E(R) shows a similar behaviour as for Vt, 1, 
but finally tends to a finite value for R ~ 0. 

Finally results shall be presented for a special case for which energy eigenvalues 
exist for all R. This type of  model  potential could occur in applications to molecular 
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Fig .  7. T h e  e n e r g y  E = E ( R )  for the states with n < 3 and for 4fa. for the problem with  the potential  
e n e r g y  V0.1 = - 1 / r  1 - 1 / r  e - 0.1/r  1 r e 
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Table 2. The  crossing points f o r  some lower s tates  with the same symmetry  o f  the problem with the potential  

energy V(r) = - 1/r 1 - 1/r 2 - O.1/r 1 r 2 (see Fig. 7) 

States R [a.u.] - E  [a.u.] - A '  

3s% 0.42 0.22890 0.0135 
3dag 6.0102 

2scrg 3.95 0.29442 1.4459 
3d~rg 7.1566 

3pa u 6.3018 
4 f a ,  11.71 0.19447 18.9187 

problems. As an example the case with Z 1 = Z 2 = 1 and Q = 0.1 shall be discussed. 
The correlation diagram for the states with principal quantum numbers 1 to 3 
and for the state 4fau  (classification according to the united atom case) are shown 
in Fig. 7. The energy values En~ can be calculated for R = 0 with the formula (10) 
of Part I [1]. In the region near R = 0 the state 2pau lies above the state 2sao. 
These two energy curves cross at about R = 0.3, and the state 2sag remains then 
for the whole region of R above the state 2pa~ (see Fig. 7). In the case of an addi- 
tional repulsive force 2pau lies below 2sag for all R. 

One should note that there appear also in this case as in other two-centre 
problems (cf. e.g. [1]) some crossing points of the energy curves for states with the 
same symmetry (see Fig. 7). Some of these are listed in Table 2. It seems to be 
remarcable that in this case also the curves for states of equal main quantum number 
3sag and 3dag do cross. 

The curve of the one-electron energies for C = 0.1 reminds on that of the system 
H e - H e ,  for which the united atom Be has a total configuration (ls)~(2s) 2 (see 
e.g. [17]). Therefore for the system H e - H e  the configurations (lsao)2(2pa,) 2 
(R large) and (lso-g) 2 (2sag) 2 (R small) will have to be considered (Fig. 7). 

d) The Connection of  Generalized Two-Centre Orbitals 
with Slater-Zener-Type Orbitals 

The Slater-Zener-type orbitals: 
Zr 

Zo = N r ' * - l e  ~* Y[~(O, r (36) 

are those solutions of the problem (2) which have no zeros in their radial part, 
and for which especially: 

Qo = - n*(n* - 1)/2 + l(l + 1)/2. (37) 

These orbitals may be generalized to the two-centre case with equal centres as 
those special solutions of the problem: 

A Z/2 Z/2  - n * ( n * -  1)/2 + l(l + 1)/2) 
2 rl r2 rl r2 Z = EZ 

(38) 
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Fig. 8. The energy E = E(R) for the problems with a potential, which goes over into a Slater-type 
potential for R -~0  for the states with n* _-< 3 

Table 3. The values o f  Q for the generalized Slater-Zener-type orbitals, which are plotted 

United Value of the 
atom-designation parameter 
n*Im Q 

1*s% 0 
2*sa 9 - 1 
2 * p ~  0 
2*plr~ 0 
3*sag - 3 
3*per= - 2 
3*pn. - 2 
3*d% 0 
3*dTr~ 0 
3*dc~g O 
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w h i c h  h a v e  n o  ze ros  in the i r  # - p a r t  V o r  R--* oo (38) goes  o v e r  i n t o  a h y d r o g e n i c  
p r o b l e m  [1] .  C o r r e l a t i o n  d i a g r a m s  for  s o m e  e x a m p l e s  o f  S la t e r - type  p r o b l e m s  

a re  s h o w n  in Fig .  8. T h e  v a l u e s  o f  t he  p a r a m e t e r  Qo for  the  g e n e r a l i z e d  S la te r -Zener -  

type  f u n c t i o n s  a r e  g i v e n  in T a b l e  3 for  t he  p l o t t e d  e n e r g y  curves .  I f  Qo = 0 t h e n  
n* = n a n d  the  p r o b l e m  is r e d u c e d  to  tha t  o f  the  H ~  m o l e c u l e  ion.  
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